前提条件: 不機嫌な数字/数とメックス
セット2(https://www.geeksforgeeks.org/dsa/combinatorial-game-theory-set-2-game-nim/)ですでに見てきました。
古典的なNIMゲームを少し変更したとします。今回は、各プレイヤーは1つまたは3つの石のみを削除できます(NIMの古典的なゲームのように石の数は何もありません)。誰が勝つかを予測できますか?
はい、Sprague-Grundy定理を使用して勝者を予測できます。
Sprague-Grundy定理とは何ですか?
Nサブゲームと2人のプレイヤーAとBで構成される複合ゲーム(複数のサブゲーム)があるとします。その後、Sprague-Grundy定理は、AとBの両方が最適に再生された場合(つまり、間違いを犯さない)、最初に開始するプレイヤーは、ゲームの最初のサブゲムでの地位のXorが勝つことが保証されます。それ以外の場合は、XORがゼロに評価された場合、プレーヤーAは何があっても間違いなく失われます。
Sprague Grundy定理を適用する方法は?
Sprague-Grundy定理を任意のものに適用できます 公平なゲーム そしてそれを解決します。基本的な手順は次のようにリストされています。
- 複合ゲームをサブゲームに分割します。
- 次に、サブゲームごとに、その位置でグランディ数を計算します。
- 次に、計算されたすべてのグランディ数のXORを計算します。
- XOR値がゼロ以外の場合、ターン(最初のプレーヤー)を獲得しようとしているプレーヤーは、何があっても失う運命にあることになります。
ゲームの例: ゲームは3つの4つの石と5つの石を持つ3つの山から始まり、プレーヤーは移動する可能性があります。最後に移動するプレーヤーが勝ちます。両方のプレイヤーが最適にプレイすると仮定して、どのプレーヤーがゲームに勝ちますか?
Sprague-Grundy定理を適用することで誰が勝つかを知る方法は?
このゲーム自体がいくつかのサブゲームで構成されていることがわかります。
最初のステップ: サブゲームは、各山と見なすことができます。
2番目のステップ: 下の表からそれがわかります
Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1
このゲームの不機嫌な数を計算する方法をすでに見ています 前の 記事。
3番目のステップ: 3 0 1 = 2のXOR
4番目のステップ: XORはゼロ以外の数字なので、最初のプレーヤーが勝つと言えます。
雪と氷
以下は、4つ以上のステップを実装するプログラムです。
C++/* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ #include using namespace std; /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ #define PLAYER1 1 #define PLAYER2 2 // A Function to calculate Mex of all the values in that set int calculateMex(unordered_set<int> Set) { int Mex = 0; while (Set.find(Mex) != Set.end()) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' int calculateGrundy(int n int Grundy[]) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); unordered_set<int> Set; // A Hash Table for (int i=1; i<=3; i++) Set.insert (calculateGrundy (n-i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game void declareWinner(int whoseTurn int piles[] int Grundy[] int n) { int xorValue = Grundy[piles[0]]; for (int i=1; i<=n-1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) printf('Player 1 will winn'); else printf('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) printf('Player 2 will winn'); else printf('Player 1 will winn'); } return; } // Driver program to test above functions int main() { // Test Case 1 int piles[] = {3 4 5}; int n = sizeof(piles)/sizeof(piles[0]); // Find the maximum element int maximum = *max_element(piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy[maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ return (0); }
Java import java.util.*; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG { /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<Integer> Set) { int Mex = 0; while (Set.contains(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int Grundy[]) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table HashSet<Integer> Set = new HashSet<Integer>(); for (int i = 1; i <= 3; i++) Set.add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int piles[] int Grundy[] int n) { int xorValue = Grundy[piles[0]]; for (int i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) System.out.printf('Player 1 will winn'); else System.out.printf('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) System.out.printf('Player 2 will winn'); else System.out.printf('Player 1 will winn'); } return; } // Driver code public static void main(String[] args) { // Test Case 1 int piles[] = {3 4 5}; int n = piles.length; // Find the maximum element int maximum = Arrays.stream(piles).max().getAsInt(); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy[] = new int[maximum + 1]; Arrays.fill(Grundy -1); // Calculate Grundy Value of piles[i] and store it for (int i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ } } // This code is contributed by PrinciRaj1992
Python3 ''' Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing''' PLAYER1 = 1 PLAYER2 = 2 # A Function to calculate Mex of all # the values in that set def calculateMex(Set): Mex = 0; while (Mex in Set): Mex += 1 return (Mex) # A function to Compute Grundy Number of 'n' def calculateGrundy(n Grundy): Grundy[0] = 0 Grundy[1] = 1 Grundy[2] = 2 Grundy[3] = 3 if (Grundy[n] != -1): return (Grundy[n]) # A Hash Table Set = set() for i in range(1 4): Set.add(calculateGrundy(n - i Grundy)) # Store the result Grundy[n] = calculateMex(Set) return (Grundy[n]) # A function to declare the winner of the game def declareWinner(whoseTurn piles Grundy n): xorValue = Grundy[piles[0]]; for i in range(1 n): xorValue = (xorValue ^ Grundy[piles[i]]) if (xorValue != 0): if (whoseTurn == PLAYER1): print('Player 1 will winn'); else: print('Player 2 will winn'); else: if (whoseTurn == PLAYER1): print('Player 2 will winn'); else: print('Player 1 will winn'); # Driver code if __name__=='__main__': # Test Case 1 piles = [ 3 4 5 ] n = len(piles) # Find the maximum element maximum = max(piles) # An array to cache the sub-problems so that # re-computation of same sub-problems is avoided Grundy = [-1 for i in range(maximum + 1)]; # Calculate Grundy Value of piles[i] and store it for i in range(n): calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); ''' Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); ''' # This code is contributed by rutvik_56
C# using System; using System.Linq; using System.Collections.Generic; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG { /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; //static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<int> Set) { int Mex = 0; while (Set.Contains(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int []Grundy) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table HashSet<int> Set = new HashSet<int>(); for (int i = 1; i <= 3; i++) Set.Add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int []piles int []Grundy int n) { int xorValue = Grundy[piles[0]]; for (int i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) Console.Write('Player 1 will winn'); else Console.Write('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) Console.Write('Player 2 will winn'); else Console.Write('Player 1 will winn'); } return; } // Driver code static void Main() { // Test Case 1 int []piles = {3 4 5}; int n = piles.Length; // Find the maximum element int maximum = piles.Max(); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int []Grundy = new int[maximum + 1]; Array.Fill(Grundy -1); // Calculate Grundy Value of piles[i] and store it for (int i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ } } // This code is contributed by mits
JavaScript <script> /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ let PLAYER1 = 1; let PLAYER2 = 2; // A Function to calculate Mex of all the values in that set function calculateMex(Set) { let Mex = 0; while (Set.has(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' function calculateGrundy(nGrundy) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table let Set = new Set(); for (let i = 1; i <= 3; i++) Set.add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game function declareWinner(whoseTurnpilesGrundyn) { let xorValue = Grundy[piles[0]]; for (let i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) document.write('Player 1 will win
'); else document.write('Player 2 will win
'); } else { if (whoseTurn == PLAYER1) document.write('Player 2 will win
'); else document.write('Player 1 will win
'); } return; } // Driver code // Test Case 1 let piles = [3 4 5]; let n = piles.length; // Find the maximum element let maximum = Math.max(...piles) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array(maximum + 1); for(let i=0;i<maximum+1;i++) Grundy[i]=0; // Calculate Grundy Value of piles[i] and store it for (let i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 </script>
出力:
Player 1 will win
時間の複雑さ: o(n^2)ここで、nは山の最大石の数です。
スペースの複雑さ: o(n)グルンディアレイを使用してサブ問題の結果を保存して冗長計算を避け、o(n)スペースが必要です。
参考文献:
https://en.wikipedia.org/wiki/sprague%E2%80%93Grundy_Theorem
読者への運動: 以下のゲームを検討してください。
ゲームは、N整数A1 A2を持つ2人のプレイヤーによってプレイされます。彼/彼女のターンでは、プレーヤーが整数を選択して、整数を2 3または6で分割し、床に行きます。整数が0になると削除されます。最後に移動するプレーヤーが勝ちます。両方のプレイヤーが最適にプレイした場合、どのプレーヤーがゲームに勝ちますか?
ヒント:の例3を参照してください 前の 記事。