logo

Python の複素数 |セット 3 (三角関数と双曲線関数)

重要な複素数関数の一部については、以下の記事で説明されています。 Python の複素数 |セット 1 (導入) Python の複素数 |セット 2 (重要な関数と定数) この記事では、三角関数と双曲線関数について説明します。 三角関数 1.sin() : この関数は、 彼らのもの 引数に渡される複素数。 2.cos() : この関数は、 余弦 引数に渡される複素数。 3.タン() : この関数は、 正接 of the complex number passed in argument. Python
# Python code to demonstrate the working of  # sin() cos() tan() # importing 'cmath' for complex number operations import cmath # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z z = complex(xy); # printing sine of the complex number print ('The sine value of complex number is : 'end='') print (cmath.sin(z)) # printing cosine of the complex number print ('The cosine value of complex number is : 'end='') print (cmath.cos(z)) # printing tangent of the complex number print ('The tangent value of complex number is : 'end='') print (cmath.tan(z)) 
Output:
The sine value of complex number is : (1.2984575814159773+0.6349639147847361j) The cosine value of complex number is : (0.8337300251311491-0.9888977057628651j) The tangent value of complex number is : (0.2717525853195118+1.0839233273386946j) 

4. ソルト() : この関数は、 逆正弦 引数に渡される複素数。 5. acos() : この関数は、 逆余弦 引数に渡される複素数。 6. あたん() : この関数は、 逆正接 of the complex number passed in argument. Python
# Python code to demonstrate the working of  # asin() acos() atan() # importing 'cmath' for complex number operations import cmath # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z z = complex(xy); # printing arc sine of the complex number print ('The arc sine value of complex number is : 'end='') print (cmath.asin(z)) # printing arc cosine of the complex number print ('The arc cosine value of complex number is : 'end='') print (cmath.acos(z)) # printing arc tangent of the complex number print ('The arc tangent value of complex number is : 'end='') print (cmath.atan(z)) 
Output:
The arc sine value of complex number is : (0.6662394324925153+1.0612750619050357j) The arc cosine value of complex number is : (0.9045568943023814-1.0612750619050357j) The arc tangent value of complex number is : (1.0172219678978514+0.40235947810852507j) 

双曲線関数 1.誕生() : この関数は、 双曲線正弦 引数に渡される複素数。 2.cosh() : この関数は、 双曲線余弦 引数に渡される複素数。 3.タン() : この関数は、 双曲線正接 of the complex number passed in argument. Python
# Python code to demonstrate the working of  # sinh() cosh() tanh() # importing 'cmath' for complex number operations import cmath # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z z = complex(xy); # printing hyperbolic sine of the complex number print ('The hyperbolic sine value of complex number is : 'end='') print (cmath.sinh(z)) # printing hyperbolic cosine of the complex number print ('The hyperbolic cosine value of complex number is : 'end='') print (cmath.cosh(z)) # printing hyperbolic tangent of the complex number print ('The hyperbolic tangent value of complex number is : 'end='') print (cmath.tanh(z)) 
Output:
The hyperbolic sine value of complex number is : (0.6349639147847361+1.2984575814159773j) The hyperbolic cosine value of complex number is : (0.8337300251311491+0.9888977057628651j) The hyperbolic tangent value of complex number is : (1.0839233273386946+0.2717525853195117j) 

4. asinh() : この関数は、 逆双曲線正弦 引数に渡される複素数。 5. acosh() : この関数は、 逆双曲線余弦 引数に渡される複素数。 6.アタン() : この関数は、 逆双曲線正接 of the complex number passed in argument. Python
# Python code to demonstrate the working of  # asinh() acosh() atanh() # importing 'cmath' for complex number operations import cmath # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z z = complex(xy); # printing inverse hyperbolic sine of the complex number print ('The inverse hyperbolic sine value of complex number is : 'end='') print (cmath.asinh(z)) # printing inverse hyperbolic cosine of the complex number print ('The inverse hyperbolic cosine value of complex number is : 'end='') print (cmath.acosh(z)) # printing inverse hyperbolic tangent of the complex number print ('The inverse hyperbolic tangent value of complex number is : 'end='') print (cmath.atanh(z)) 
Output:
The inverse hyperbolic sine value of complex number is : (1.0612750619050357+0.6662394324925153j) The inverse hyperbolic cosine value of complex number is : (1.0612750619050357+0.9045568943023813j) The inverse hyperbolic tangent value of complex number is : (0.40235947810852507+1.0172219678978514j)