logo

数字が繰り返される数字の綴り方を数えます

GfG Practice で試してみる ' title= #practiceLinkDiv { 表示: なし !重要; }

数値の桁を含む文字列が与えられます。番号には、同じ連続数字が多数含まれる場合があります。課題は、数字の綴り方の数を数えるということです。 
たとえば、8884441100 を考えてみると、単にトリプル 8、トリプル 4、ダブル 2、ダブル ゼロと綴ることができます。 double 8 8 4 double 4 2 2 double 0 と綴ることもできます。 

例:   

Input : num = 100 Output : 2 The number 100 has only 2 possibilities 1) one zero zero 2) one double zero. Input : num = 11112 Output: 8 1 1 1 1 2 11 1 1 2 1 1 11 2 1 11 1 2 11 11 2 1 111 2 111 1 2 1111 2 Input : num = 8884441100 Output: 64 Input : num = 12345 Output: 1 Input : num = 11111 Output: 16
Recommended Practice 数字を綴ってください 試してみてください!

これは順列と組み合わせの単純な問題です。質問 11112 で与えられたテスト ケースの例を考えてみます。答えは 1111 の可能な部分文字列の数によって異なります。「1111」の可能な部分文字列の数は 2^3 = 8 です。これは、4 - 1 = 3 個の区切り文字 '|' の組み合わせの数であるためです。文字列の 2 つの文字の間 (文字列で表される数値の桁): '1|1|1|1'。組み合わせは特定の 1 を選択するかどうかに依存し、「2」の場合は 2^0 = 1 の可能性が 1 つだけあるため、「11112」の答えは 8*1 = 8 になります。 



したがって、このアプローチは、文字列内の特定の連続する数字をカウントし、前の結果と 2^(count-1) を乗算することです。 

C++
// C++ program to count number of ways we // can spell a number #include   using namespace std; typedef long long int ll; // Function to calculate all possible spells of // a number with repeated digits // num --> string which is favourite number ll spellsCount(string num) {  int n = num.length();  // final count of total possible spells  ll result = 1;  // iterate through complete number  for (int i=0; i<n; i++)  {  // count contiguous frequency of particular  // digit num[i]  int count = 1;  while (i < n-1 && num[i+1] == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply with result   result = result * pow(2 count-1);  }  return result; } // Driver program to run the case int main() {  string num = '11112';  cout << spellsCount(num);  return 0; } 
Java
// Java program to count number of ways we // can spell a number import java.io.*; class GFG {    // Function to calculate all possible   // spells of a number with repeated digits  // num --> string which is favourite number  static long spellsCount(String num)  {    int n = num.length();  // final count of total possible spells  long result = 1;  // iterate through complete number  for (int i = 0; i < n; i++) {    // count contiguous frequency of   // particular digit num[i]  int count = 1;    while (i < n - 1 && num.charAt(i + 1)   == num.charAt(i)) {    count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   (long)Math.pow(2 count - 1);  }  return result;  }  public static void main(String[] args)  {  String num = '11112';  System.out.print(spellsCount(num));  } } // This code is contributed by Anant Agarwal. 
Python3
# Python3 program to count number of # ways we can spell a number # Function to calculate all possible  # spells of a number with repeated  # digits num --> string which is  # favourite number def spellsCount(num): n = len(num); # final count of total # possible spells result = 1; # iterate through complete # number i = 0; while(i<n): # count contiguous frequency  # of particular digit num[i] count = 1; while (i < n - 1 and num[i + 1] == num[i]): count += 1; i += 1; # Compute 2^(count-1) and # multiply with result  result = result * int(pow(2 count - 1)); i += 1; return result; # Driver Code num = '11112'; print(spellsCount(num)); # This code is contributed # by mits 
C#
// C# program to count number of ways we // can spell a number using System; class GFG {    // Function to calculate all possible   // spells of a number with repeated   // digits num --> string which is  // favourite number  static long spellsCount(String num)  {    int n = num.Length;  // final count of total possible  // spells  long result = 1;  // iterate through complete number  for (int i = 0; i < n; i++)  {    // count contiguous frequency of   // particular digit num[i]  int count = 1;    while (i < n - 1 && num[i + 1]   == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   (long)Math.Pow(2 count - 1);  }    return result;  }  // Driver code  public static void Main()  {  String num = '11112';  Console.Write(spellsCount(num));  } } // This code is contributed by nitin mittal. 
PHP
 // PHP program to count  // number of ways we // can spell a number // Function to calculate  // all possible spells of // a number with repeated  // digits num --> string // which is favourite number function spellsCount($num) { $n = strlen($num); // final count of total // possible spells $result = 1; // iterate through  // complete number for ($i = 0; $i < $n; $i++) { // count contiguous frequency  // of particular digit num[i] $count = 1; while ($i < $n - 1 && $num[$i + 1] == $num[$i]) { $count++; $i++; } // Compute 2^(count-1) and // multiply with result  $result = $result * pow(2 $count - 1); } return $result; } // Driver Code $num = '11112'; echo spellsCount($num); // This code is contributed // by nitin mittal.  ?> 
JavaScript
<script> // Javascript program to count number of  // ways we can spell a number // Function to calculate all possible  // spells of a number with repeated  // digits num --> string which is // favourite number function spellsCount(num) {  let n = num.length;  // Final count of total possible  // spells  let result = 1;  // Iterate through complete number  for (let i = 0; i < n; i++)  {    // Count contiguous frequency of   // particular digit num[i]  let count = 1;    while (i < n - 1 &&   num[i + 1] == num[i])  {  count++;  i++;  }  // Compute 2^(count-1) and multiply   // with result  result = result *   Math.pow(2 count - 1);  }  return result; }   // Driver code let num = '11112'; document.write(spellsCount(num)); // This code is contributed by code_hunt   </script> 

出力
8

時間計算量: O(n*log(n))
補助スペース: ○(1)

この問題を解決する別のアプローチがある場合は、共有してください。