与えられた 文字列 課題はそれを見つけることです 最小 なるキャラクター 追加(最後に挿入) 文字列回文を作成します。
例:
入力 : s = 「完了」
出力 :2
説明: 文字列回文を「abede」として作成できます ない ' を追加することで ない 文字列の最後に。
入力 :s = 'aabb'
出力 :2
説明: 'aabb として文字列回文を作成できます ああ ' を追加することで ああ 文字列の最後に。
目次
毎回回文をチェック - O(n^2) 時間と O(n) 空間
C++解決策には以下が含まれます 徐々に から文字を削除する 始まり 文字列が になるまで、文字列を 1 つずつ追加します。 回文 。答えは削除された文字の合計数になります。
たとえば、次の文字列を考えてみましょう s = 「ここ」。 まず、文字列全体が回文であるかどうかを確認しますが、回文ではありません。次に最初の文字を削除すると、次のようになります。 文字列「beg」。 もう一度確認してみましたが、まだ回文ではありません。次に、別の文字を最初から削除します 「エデ」を残す。 今回の文字列は回文です。したがって、 出力は2です 回文を作成するために先頭から削除された文字の数を表します。
// C++ code to find minimum number // of appends to make string Palindrome #include using namespace std; // Function to check if a given string is a palindrome bool isPalindrome(string s) { int left = 0 right = s.length() - 1; while (left < right) { if (s[left] != s[right]) return false; left++; right--; } return true; } // Function to find the minimum number of // characters to remove from the beginning int noOfAppends(string& s) { int n = s.length(); // Remove characters from the start until // the string becomes a palindrome for (int i = 0; i < n; i++) { if (isPalindrome(s.substr(i))) { // Return the number of characters removed return i; } } // If no palindrome is found remove // all but one character return n - 1; } int main() { string s = 'abede'; int result = noOfAppends(s); cout << result << endl; return 0; }
Java // Java code to find minimum number // of appends to make string Palindrome import java.util.*; class GfG { // Function to check if a given string is a palindrome static boolean isPalindrome(String s) { int left = 0 right = s.length() - 1; while (left < right) { if (s.charAt(left) != s.charAt(right)) return false; left++; right--; } return true; } // Function to find the minimum number of // characters to remove from the beginning static int noOfAppends(String s) { int n = s.length(); // Remove characters from the start until // the string becomes a palindrome for (int i = 0; i < n; i++) { if (isPalindrome(s.substring(i))) { // Return the number of characters removed return i; } } // If no palindrome is found remove // all but one character return n - 1; } public static void main(String[] args) { String s = 'abede'; int result = noOfAppends(s); System.out.println(result); } }
Python # Python code to find minimum number # of appends to make string Palindrome # Function to check if a given string is a palindrome def is_palindrome(s): left right = 0 len(s) - 1 while left < right: if s[left] != s[right]: return False left += 1 right -= 1 return True # Function to find the minimum number of # characters to remove from the beginning def no_of_appends(s): n = len(s) # Remove characters from the start until # the string becomes a palindrome for i in range(n): if is_palindrome(s[i:]): # Return the number of characters # removed return i # If no palindrome is found remove # all but one character return n - 1 if __name__ == '__main__': s = 'abede' result = no_of_appends(s) print(result)
C# // C# code to find minimum number // of appends to make string Palindrome using System; class GfG { // Function to check if a given string // is a palindrome static bool IsPalindrome(string s) { int left = 0 right = s.Length - 1; while (left < right) { if (s[left] != s[right]) return false; left++; right--; } return true; } // Function to find the minimum number of // characters to remove from the beginning static int NoOfAppends(string s) { int n = s.Length; // Remove characters from the start until // the string becomes a palindrome for (int i = 0; i < n; i++) { if (IsPalindrome(s.Substring(i))) { // Return the number of characters // removed return i; } } // If no palindrome is found remove all but // one character return n - 1; } static void Main(string[] args) { string s = 'abede'; int result = NoOfAppends(s); Console.WriteLine(result); } }
JavaScript // JavaScript code to find minimum number // of appends to make string Palindrome // Function to check if a given string is a palindrome function isPalindrome(s) { let left = 0 right = s.length - 1; while (left < right) { if (s[left] !== s[right]) return false; left++; right--; } return true; } // Function to find the minimum number of // characters to remove from the beginning function noOfAppends(s) { let n = s.length; // Remove characters from the start until // the string becomes a palindrome for (let i = 0; i < n; i++) { if (isPalindrome(s.substring(i))) { // Return the number of // characters removed return i; } } // If no palindrome is found remove // all but one character return n - 1; } const s = 'abede'; const result = noOfAppends(s); console.log(result);
出力
2
Knuth Morris Pratt アルゴリズムの使用 - O(n) 時間と O(n) 空間
C++このアプローチの背後にある基本的な考え方は、 計算する の 末尾からの最大の部分文字列 そして文字列の長さ マイナス この値は 最小 追加の数。ロジックは直感的であるため、追加する必要はありません。 回文 回文を形成しないもののみ。この最大の回文を端から見つけるには、 逆行する 文字列が計算する DFA。
の DFA (決定論的有限オートマトン) の文脈で言及された クヌース・モリス・プラット・アルゴリズム を見つけるのに役立つ概念です。 接尾辞でもある文字列の最長の接頭辞 そして、文字列を再度反転し(したがって、元の文字列を取り戻し)、文字列と尊敬される文字列との一致の数を表す最終状態を見つけます。したがって、最後から回文である最大の部分文字列が得られます。
// CPP program for the given approach // using 2D vector for DFA #include using namespace std; // Function to build the DFA and precompute the state vector<vector<int>> buildDFA(string& s) { int n = s.length(); // Number of possible characters (ASCII range) int c = 256; // Initialize 2D vector with zeros vector<vector<int>> dfa(n vector<int>(c 0)); int x = 0; dfa[0][s[0]] = 1; // Build the DFA for the given string for (int i = 1; i < n; i++) { for (int j = 0; j < c; j++) { dfa[i][j] = dfa[x][j]; } dfa[i][s[i]] = i + 1; x = dfa[x][s[i]]; } return dfa; } // Function to find the longest overlap // between the string and its reverse int longestOverlap(vector<vector<int>>& dfa string& query) { int ql = query.length(); int state = 0; // Traverse through the query to // find the longest overlap for (int i = 0; i < ql; i++) { state = dfa[state][query[i]]; } return state; } // Function to find the minimum // number of characters to append int minAppends(string s) { // Reverse the string string reversedS = s; reverse(reversedS.begin() reversedS.end()); // Build the DFA for the reversed string vector<vector<int>> dfa = buildDFA(reversedS); // Get the longest overlap with the original string int longestOverlapLength = longestOverlap(dfa s); // Minimum characters to append // to make the string a palindrome return s.length() - longestOverlapLength; } int main() { string s = 'abede'; cout << minAppends(s) << endl; return 0; }
Java // Java program for the given approach // using 2D array for DFA import java.util.*; class GfG { // Function to build the DFA and precompute the state static int[][] buildDFA(String s) { int n = s.length(); // Number of possible characters (ASCII range) int c = 256; // Initialize 2D array with zeros int[][] dfa = new int[n][c]; int x = 0; dfa[0][s.charAt(0)] = 1; // Build the DFA for the given string for (int i = 1; i < n; i++) { for (int j = 0; j < c; j++) { dfa[i][j] = dfa[x][j]; } dfa[i][s.charAt(i)] = i + 1; x = dfa[x][s.charAt(i)]; } return dfa; } // Function to find the longest overlap // between the string and its reverse static int longestOverlap(int[][] dfa String query) { int ql = query.length(); int state = 0; // Traverse through the query to // find the longest overlap for (int i = 0; i < ql; i++) { state = dfa[state][query.charAt(i)]; } return state; } // Function to find the minimum // number of characters to append static int minAppends(String s) { // Reverse the string String reversedS = new StringBuilder(s).reverse().toString(); // Build the DFA for the reversed string int[][] dfa = buildDFA(reversedS); // Get the longest overlap with the original string int longestOverlapLength = longestOverlap(dfa s); // Minimum characters to append // to make the string a palindrome return s.length() - longestOverlapLength; } public static void main(String[] args) { String s = 'abede'; System.out.println(minAppends(s)); } }
Python # Python program for the given approach # using 2D list for DFA # Function to build the DFA and precompute the state def buildDFA(s): n = len(s) # Number of possible characters (ASCII range) c = 256 # Initialize 2D list with zeros dfa = [[0] * c for _ in range(n)] x = 0 dfa[0][ord(s[0])] = 1 # Build the DFA for the given string for i in range(1 n): for j in range(c): dfa[i][j] = dfa[x][j] dfa[i][ord(s[i])] = i + 1 x = dfa[x][ord(s[i])] return dfa # Function to find the longest overlap # between the string and its reverse def longestOverlap(dfa query): ql = len(query) state = 0 # Traverse through the query to # find the longest overlap for i in range(ql): state = dfa[state][ord(query[i])] return state # Function to find the minimum # number of characters to append def minAppends(s): # Reverse the string reversedS = s[::-1] # Build the DFA for the reversed string dfa = buildDFA(reversedS) # Get the longest overlap with the # original string longestOverlapLength = longestOverlap(dfa s) # Minimum characters to append # to make the string a palindrome return len(s) - longestOverlapLength if __name__ == '__main__': s = 'abede' print(minAppends(s))
C# // C# program for the given approach // using 2D array for DFA using System; class GfG { // Function to build the DFA and precompute the state static int[] buildDFA(string s) { int n = s.Length; // Number of possible characters // (ASCII range) int c = 256; // Initialize 2D array with zeros int[] dfa = new int[n c]; int x = 0; dfa[0 s[0]] = 1; // Build the DFA for the given string for (int i = 1; i < n; i++) { for (int j = 0; j < c; j++) { dfa[i j] = dfa[x j]; } dfa[i s[i]] = i + 1; x = dfa[x s[i]]; } return dfa; } // Function to find the longest overlap // between the string and its reverse static int longestOverlap(int[] dfa string query) { int ql = query.Length; int state = 0; // Traverse through the query to // find the longest overlap for (int i = 0; i < ql; i++) { state = dfa[state query[i]]; } return state; } // Function to find the minimum // number of characters to append static int minAppends(string s) { // Reverse the string using char array char[] reversedArray = s.ToCharArray(); Array.Reverse(reversedArray); string reversedS = new string(reversedArray); // Build the DFA for the reversed string int[] dfa = buildDFA(reversedS); // Get the longest overlap with the original string int longestOverlapLength = longestOverlap(dfa s); // Minimum characters to append // to make the string a palindrome return s.Length - longestOverlapLength; } static void Main() { string s = 'abede'; Console.WriteLine(minAppends(s)); } }
JavaScript // JavaScript program for the given approach // using 2D array for DFA // Function to build the DFA and precompute the state function buildDFA(s) { let n = s.length; // Number of possible characters // (ASCII range) let c = 256; // Initialize 2D array with zeros let dfa = Array.from({ length: n } () => Array(c).fill(0)); let x = 0; dfa[0][s.charCodeAt(0)] = 1; // Build the DFA for the given string for (let i = 1; i < n; i++) { for (let j = 0; j < c; j++) { dfa[i][j] = dfa[x][j]; } dfa[i][s.charCodeAt(i)] = i + 1; x = dfa[x][s.charCodeAt(i)]; } return dfa; } // Function to find the longest overlap // between the string and its reverse function longestOverlap(dfa query) { let ql = query.length; let state = 0; // Traverse through the query to // find the longest overlap for (let i = 0; i < ql; i++) { state = dfa[state][query.charCodeAt(i)]; } return state; } // Function to find the minimum // number of characters to append function minAppends(s) { // Reverse the string let reversedS = s.split('').reverse().join(''); // Build the DFA for the reversed string let dfa = buildDFA(reversedS); // Get the longest overlap with the original string let longestOverlapLength = longestOverlap(dfa s); // Minimum characters to append // to make the string a palindrome return s.length - longestOverlapLength; } let s = 'abede'; console.log(minAppends(s));
出力
2
関連記事:
- 動的プログラミング |セット 28 (回文を形成するための最小挿入数)