Min Heapの配列表現を考えると、それをMax Heapに変換します。
例:
入力: arr [] = {3 5 9 6 8 20 10 12 18 9}
Javaで文字列を連結する3
/
5 9
//
6 8 20 10
/ /
12 18 9出力: arr [] = {20 18 10 12 9 9 3 5 6 8}
20
/
18 10
//
12 9 3
/ /
5 6 8入力: arr [] = {3 4 8 11 13}
出力: arr [] = {13 11 8 4 3}
アイデアは、入力を気にせずに最大ヒープを構築することです。 Minheapの最下部および右端の内部ノードから始めて、すべての内部ノードをボトムアップ方法で最大ヒープを構築します。
特定の手順に従って問題を解決します。
- Minheapの右端の内部ノードからHeapify関数を呼び出す
- すべての内部ノードをボトムアップ方法で盛り上げて最大ヒープを構築する
- Max-Heapを印刷します
アルゴリズム: これが次のとおりです 最小ヒープを最大ヒープに変換するためのアルゴリズム :
- ヒープの最後の非葉のノード(つまり、最後の葉のノードの親)から始めます。バイナリヒープの場合、このノードはインデックスフロア((n -1)/2)にあり、nはヒープ内のノードの数です。
- 葉以外のノードごとにaを実行します 「Heapify」 ヒーププロパティを修正するための操作。最小の山では、この操作には、ノードの値が子供の値よりも大きいかどうかを確認することが含まれます。最大限には、操作には、ノードの値が子供の値よりも少ないかどうかを確認することが含まれます。
- ヒープを上って動作する非葉のノードのそれぞれについてステップ2を繰り返します。ヒープの根に到達すると、ヒープ全体が最大ヒープになるはずです。
以下は、上記のアプローチの実装です。
2か月ぶりC++
// A C++ program to convert min Heap to max Heap #include using namespace std; // to heapify a subtree with root at given index void MaxHeapify(int arr[] int i int N) { int l = 2 * i + 1; int r = 2 * i + 2; int largest = i; if (l < N && arr[l] > arr[i]) largest = l; if (r < N && arr[r] > arr[largest]) largest = r; if (largest != i) { swap(arr[i] arr[largest]); MaxHeapify(arr largest N); } } // This function basically builds max heap void convertMaxHeap(int arr[] int N) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for (int i = (N - 2) / 2; i >= 0; --i) MaxHeapify(arr i N); } // A utility function to print a given array // of given size void printArray(int* arr int size) { for (int i = 0; i < size; ++i) cout << arr[i] << ' '; } // Driver's code int main() { // array representing Min Heap int arr[] = { 3 5 9 6 8 20 10 12 18 9 }; int N = sizeof(arr) / sizeof(arr[0]); printf('Min Heap array : '); printArray(arr N); // Function call convertMaxHeap(arr N); printf('nMax Heap array : '); printArray(arr N); return 0; }
C // C program to convert min Heap to max Heap #include void swap(int* a int* b) { int temp = *a; *a = *b; *b = temp; } // to heapify a subtree with root at given index void MaxHeapify(int arr[] int i int N) { int l = 2 * i + 1; int r = 2 * i + 2; int largest = i; if (l < N && arr[l] > arr[i]) largest = l; if (r < N && arr[r] > arr[largest]) largest = r; if (largest != i) { swap(&arr[i] &arr[largest]); MaxHeapify(arr largest N); } } // This function basically builds max heap void convertMaxHeap(int arr[] int N) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for (int i = (N - 2) / 2; i >= 0; --i) MaxHeapify(arr i N); } // A utility function to print a given array // of given size void printArray(int* arr int size) { for (int i = 0; i < size; ++i) printf('%d ' arr[i]); } // Driver's code int main() { // array representing Min Heap int arr[] = { 3 5 9 6 8 20 10 12 18 9 }; int N = sizeof(arr) / sizeof(arr[0]); printf('Min Heap array : '); printArray(arr N); // Function call convertMaxHeap(arr N); printf('nMax Heap array : '); printArray(arr N); return 0; }
Java // Java program to convert min Heap to max Heap class GFG { // To heapify a subtree with root at given index static void MaxHeapify(int arr[] int i int N) { int l = 2 * i + 1; int r = 2 * i + 2; int largest = i; if (l < N && arr[l] > arr[i]) largest = l; if (r < N && arr[r] > arr[largest]) largest = r; if (largest != i) { // swap arr[i] and arr[largest] int temp = arr[i]; arr[i] = arr[largest]; arr[largest] = temp; MaxHeapify(arr largest N); } } // This function basically builds max heap static void convertMaxHeap(int arr[] int N) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for (int i = (N - 2) / 2; i >= 0; --i) MaxHeapify(arr i N); } // A utility function to print a given array // of given size static void printArray(int arr[] int size) { for (int i = 0; i < size; ++i) System.out.print(arr[i] + ' '); } // driver's code public static void main(String[] args) { // array representing Min Heap int arr[] = { 3 5 9 6 8 20 10 12 18 9 }; int N = arr.length; System.out.print('Min Heap array : '); printArray(arr N); // Function call convertMaxHeap(arr N); System.out.print('nMax Heap array : '); printArray(arr N); } } // Contributed by Pramod Kumar
Python3 # A Python3 program to convert min Heap # to max Heap # to heapify a subtree with root # at given index def MaxHeapify(arr i N): l = 2 * i + 1 r = 2 * i + 2 largest = i if l < N and arr[l] > arr[i]: largest = l if r < N and arr[r] > arr[largest]: largest = r if largest != i: arr[i] arr[largest] = arr[largest] arr[i] MaxHeapify(arr largest N) # This function basically builds max heap def convertMaxHeap(arr N): # Start from bottommost and rightmost # internal node and heapify all # internal nodes in bottom up way for i in range(int((N - 2) / 2) -1 -1): MaxHeapify(arr i N) # A utility function to print a # given array of given size def printArray(arr size): for i in range(size): print(arr[i] end=' ') print() # Driver Code if __name__ == '__main__': # array representing Min Heap arr = [3 5 9 6 8 20 10 12 18 9] N = len(arr) print('Min Heap array : ') printArray(arr N) # Function call convertMaxHeap(arr N) print('Max Heap array : ') printArray(arr N) # This code is contributed by PranchalK
C# // C# program to convert // min Heap to max Heap using System; class GFG { // To heapify a subtree with // root at given index static void MaxHeapify(int[] arr int i int n) { int l = 2 * i + 1; int r = 2 * i + 2; int largest = i; if (l < n && arr[l] > arr[i]) largest = l; if (r < n && arr[r] > arr[largest]) largest = r; if (largest != i) { // swap arr[i] and arr[largest] int temp = arr[i]; arr[i] = arr[largest]; arr[largest] = temp; MaxHeapify(arr largest n); } } // This function basically // builds max heap static void convertMaxHeap(int[] arr int n) { // Start from bottommost and // rightmost internal node and // heapify all internal nodes // in bottom up way for (int i = (n - 2) / 2; i >= 0; --i) MaxHeapify(arr i n); } // A utility function to print // a given array of given size static void printArray(int[] arr int size) { for (int i = 0; i < size; ++i) Console.Write(arr[i] + ' '); } // Driver's Code public static void Main() { // array representing Min Heap int[] arr = { 3 5 9 6 8 20 10 12 18 9 }; int n = arr.Length; Console.Write('Min Heap array : '); printArray(arr n); // Function call convertMaxHeap(arr n); Console.Write('nMax Heap array : '); printArray(arr n); } } // This code is contributed by nitin mittal.
JavaScript <script> // javascript program to convert min Heap to max Heap // To heapify a subtree with root at given index function MaxHeapify(arr i n) { var l = 2*i + 1; var r = 2*i + 2; var largest = i; if (l < n && arr[l] > arr[i]) largest = l; if (r < n && arr[r] > arr[largest]) largest = r; if (largest != i) { // swap arr[i] and arr[largest] var temp = arr[i]; arr[i] = arr[largest]; arr[largest] = temp; MaxHeapify(arr largest n); } } // This function basically builds max heap function convertMaxHeap(arr n) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for (i = (n-2)/2; i >= 0; --i) MaxHeapify(arr i n); } // A utility function to print a given array // of given size function printArray(arr size) { for (i = 0; i < size; ++i) document.write(arr[i]+' '); } // driver program // array representing Min Heap var arr = [3 5 9 6 8 20 10 12 18 9]; var n = arr.length; document.write('Min Heap array : '); printArray(arr n); convertMaxHeap(arr n); document.write('
Max Heap array : '); printArray(arr n); // This code is contributed by 29AjayKumar </script>
PHP // A PHP program to convert min Heap to max Heap // utility swap function function swap(&$a&$b) { $tmp=$a; $a=$b; $b=$tmp; } // to heapify a subtree with root at given index function MaxHeapify(&$arr $i $n) { $l = 2*$i + 1; $r = 2*$i + 2; $largest = $i; if ($l < $n && $arr[$l] > $arr[$i]) $largest = $l; if ($r < $n && $arr[$r] > $arr[$largest]) $largest = $r; if ($largest != $i) { swap($arr[$i] $arr[$largest]); MaxHeapify($arr $largest $n); } } // This function basically builds max heap function convertMaxHeap(&$arr $n) { // Start from bottommost and rightmost // internal node and heapify all internal // nodes in bottom up way for ($i = (int)(($n-2)/2); $i >= 0; --$i) MaxHeapify($arr $i $n); } // A utility function to print a given array // of given size function printArray($arr $size) { for ($i = 0; $i <$size; ++$i) print($arr[$i].' '); } // Driver code // array representing Min Heap $arr = array(3 5 9 6 8 20 10 12 18 9); $n = count($arr); print('Min Heap array : '); printArray($arr $n); convertMaxHeap($arr $n); print('nMax Heap array : '); printArray($arr $n); // This code is contributed by mits ?>
出力
Min Heap array : 3 5 9 6 8 20 10 12 18 9 Max Heap array : 20 18 10 12 9 9 3 5 6 8
時間の複雑さ: o(n)詳細については、参照してください。 ヒープを構築する時間の複雑さ
補助スペース: の上)