logo

ソートされた行列内の要素を検索する

ソートされた行列が与えられた場合 とともに[][] サイズ n × m および整数 × x が行列内に存在するかどうかを判断します。
行列は次のように並べ替えられます。

  • 各行は昇順に並べ替えられます。
  • 各行の最初の要素が前の行の最後の要素以上である
    (つまり、すべての 1 ≤ i に対して mat[i][0] ≥ mat[i−1][m−1]< n).

例:

入力: x = 14 マット[][] = [[ 1 5 9]
[14 20 21]
[30 34 43]]
出力: 真実
説明: 14は行列の 2 行目の 1 列目に存在します。



入力: x = 42 マット[][] = [[ 1 5 9 11]
[14 20 21 26]
[30 34 43 50]]
出力: 間違い
説明: 42マトリックスには登場しません。

目次

[素朴なアプローチ] すべての要素で比較 – O(n × m) 時間と O(1) 空間

考え方は、行列 mat[][] 全体を反復処理し、各要素を x と比較することです。要素が x に一致する場合、true を返します。それ以外の場合は、トラバースの終了時に false を返します。

C++
#include    #include  using namespace std; bool searchMatrix(vector<vector<int>>& mat int x) {  int n = mat.size();  int m = mat[0].size();  // traverse every element in the matrix  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  if (mat[i][j] == x)  return true;  }  }  return false; } int main() {  vector<vector<int>> mat = {  {1 5 9}  {14 20 21}  {30 34 43}  };  int x = 14;  cout << (searchMatrix(mat x) ? 'true' : 'false') << endl; } 
Java
class GfG {  public static boolean searchMatrix(int[][] mat int x) {  int n = mat.length;  int m = mat[0].length;  // traverse every element in the matrix  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  if (mat[i][j] == x)  return true;  }  }  return false;  }  public static void main(String[] args) {  int[][] mat = {  {1 5 9}  {14 20 21}  {30 34 43}  };  int x = 14;  System.out.println(searchMatrix(mat x) ? 'true' : 'false');  } } 
Python
def searchMatrix(mat x): n = len(mat) m = len(mat[0]) # traverse every element in the matrix for i in range(n): for j in range(m): if mat[i][j] == x: return True return False if __name__ == '__main__': mat = [ [1 5 9] [14 20 21] [30 34 43] ] x = 14 print('true' if searchMatrix(mat x) else 'false') 
C#
using System; class GfG {  public static bool searchMatrix(int[][] mat int x) {  int n = mat.Length;  int m = mat[0].Length;  // traverse every element in the matrix  for (int i = 0; i < n; i++) {  for (int j = 0; j < m; j++) {  if (mat[i][j] == x)  return true;  }  }  return false;  }  public static void Main(string[] args) {  int[][] mat = new int[][] {  new int[] {1 5 9}  new int[] {14 20 21}  new int[] {30 34 43}  };  int x = 14;  Console.WriteLine(searchMatrix(mat x) ? 'true' : 'false');  } } 
JavaScript
function searchMatrix(mat x) {  let n = mat.length;  let m = mat[0].length;  // traverse every element in the matrix  for (let i = 0; i < n; i++) {  for (let j = 0; j < m; j++) {  if (mat[i][j] === x)  return true;  }  }  return false; } // Driver Code let mat = [  [1 5 9]  [14 20 21]  [30 34 43] ]; let x = 14; console.log(searchMatrix(mat x) ? 'true' : 'false'); 

出力
true 

[より良いアプローチ] 二分探索を 2 回使用する - O(log n + log m) 時間と O(1) 空間

まず、二分探索を使用してターゲット x が存在する可能性のある行を特定し、次にその行内で再度二分探索を適用します。正しい行を見つけるために、中央の行の最初の要素に対して二分検索を実行します。

段階的な実装:

=> 低 = 0 および高 = n - 1 から開始します。
=> x が中央の行の最初の要素 (a[mid][0]) より小さい場合、x は Mid 以降の行のすべての要素よりも小さいため、high = Mid - 1 を更新します。
=> x が中央の行 (a[mid][0]) の最初の要素より大きい場合、x は行内のすべての要素より大きくなります。< mid so store the current mid row and update low = mid + 1.

正しい行が見つかったら、その行内で二分検索を適用してターゲット要素 x を検索できます。

C++
#include    #include  using namespace std; // function to binary search for x in arr[] bool search(vector<int> &arr int x) {  int lo = 0 hi = arr.size() - 1;  while (lo <= hi) {  int mid = (lo + hi) / 2;  if (x == arr[mid])  return true;  if (x < arr[mid])  hi = mid - 1;  else  lo = mid + 1;  }  return false; } // function to search element x in fully  // sorted matrix bool searchMatrix(vector<vector<int>> &mat int x) {  int n = mat.size() m = mat[0].size();  int lo = 0 hi = n - 1;  int row = -1;  while (lo <= hi) {  int mid = (lo + hi) / 2;  // if the first element of mid row is equal to x  // return true  if (x == mat[mid][0])  return true;    // if x is greater than first element of mid row  // store the mid row and search in lower half  if (x > mat[mid][0]) {  row = mid;  lo = mid + 1;  }    // if x is smaller than first element of mid row  // search in upper half  else  hi = mid - 1;  }    // if x is smaller than all elements of mat[][]  if (row == -1)  return false;  return search(mat[row] x); } int main() {  vector<vector<int>> mat = {{1 5 9} {14 20 21} {30 34 43}};  int x = 14;  if (searchMatrix(mat x))  cout << 'true';  else  cout << 'false';  return 0; } 
Java
class GfG {    // function to binary search for x in arr[]  static boolean search(int[] arr int x) {  int lo = 0 hi = arr.length - 1;  while (lo <= hi) {  int mid = (lo + hi) / 2;  if (x == arr[mid])  return true;  if (x < arr[mid])  hi = mid - 1;  else  lo = mid + 1;  }  return false;  }    // function to search element x in fully   // sorted matrix  static boolean searchMatrix(int[][] mat int x) {  int n = mat.length m = mat[0].length;  int lo = 0 hi = n - 1;  int row = -1;  while (lo <= hi) {  int mid = (lo + hi) / 2;  // if the first element of mid row is equal to x  // return true  if (x == mat[mid][0])  return true;  // if x is greater than first element of mid row  // store the mid row and search in lower half  if (x > mat[mid][0]) {  row = mid;  lo = mid + 1;  }  // if x is smaller than first element of mid row  // search in upper half  else  hi = mid - 1;  }  // if x is smaller than all elements of mat[][]  if (row == -1)  return false;  return search(mat[row] x);  }  public static void main(String[] args) {  int[][] mat = {  {1 5 9}  {14 20 21}  {30 34 43}  };  int x = 14;  if (searchMatrix(mat x))  System.out.println('true');  else  System.out.println('false');  } } 
Python
# function to binary search for x in arr[] def search(arr x): lo = 0 hi = len(arr) - 1 while lo <= hi: mid = (lo + hi) // 2 if x == arr[mid]: return True if x < arr[mid]: hi = mid - 1 else: lo = mid + 1 return False # function to search element x in fully  # sorted matrix def searchMatrix(mat x): n = len(mat) m = len(mat[0]) lo = 0 hi = n - 1 row = -1 while lo <= hi: mid = (lo + hi) // 2 # if the first element of mid row is equal to x # return true if x == mat[mid][0]: return True # if x is greater than first element of mid row # store the mid row and search in lower half if x > mat[mid][0]: row = mid lo = mid + 1 # if x is smaller than first element of mid row # search in upper half else: hi = mid - 1 # if x is smaller than all elements of mat[][] if row == -1: return False return search(mat[row] x) if __name__ == '__main__': mat = [[1 5 9] [14 20 21] [30 34 43]] x = 14 if searchMatrix(mat x): print('true') else: print('false') 
C#
using System; class GfG {    // function to binary search for x in arr[]  static bool Search(int[] arr int x) {  int lo = 0 hi = arr.Length - 1;  while (lo <= hi) {  int mid = (lo + hi) / 2;  if (x == arr[mid])  return true;  if (x < arr[mid])  hi = mid - 1;  else  lo = mid + 1;  }  return false;  }    // function to search element x in fully   // sorted matrix  static bool SearchMatrix(int[][] mat int x) {  int n = mat.Length m = mat[0].Length;  int lo = 0 hi = n - 1;  int row = -1;  while (lo <= hi) {  int mid = (lo + hi) / 2;  // if the first element of mid row is equal to x  // return true  if (x == mat[mid][0])  return true;  // if x is greater than first element of mid row  // store the mid row and search in lower half  if (x > mat[mid][0]) {  row = mid;  lo = mid + 1;  }  // if x is smaller than first element of mid row  // search in upper half  else  hi = mid - 1;  }  // if x is smaller than all elements of mat[][]  if (row == -1)  return false;  return Search(mat[row] x);  }  static void Main(string[] args) {  int[][] mat = new int[][] {  new int[] {1 5 9}  new int[] {14 20 21}  new int[] {30 34 43}  };  int x = 14;  if (SearchMatrix(mat x))  Console.WriteLine('true');  else  Console.WriteLine('false');  } } 
JavaScript
// function to binary search for x in arr[] function search(arr x) {  let lo = 0 hi = arr.length - 1;  while (lo <= hi) {  let mid = Math.floor((lo + hi) / 2);  if (x === arr[mid])  return true;  if (x < arr[mid])  hi = mid - 1;  else  lo = mid + 1;  }  return false; } // function to search element x in fully  // sorted matrix function searchMatrix(mat x) {  let n = mat.length m = mat[0].length;  let lo = 0 hi = n - 1;  let row = -1;  while (lo <= hi) {  let mid = Math.floor((lo + hi) / 2);  // if the first element of mid row is equal to x  // return true  if (x === mat[mid][0])  return true;  // if x is greater than first element of mid row  // store the mid row and search in lower half  if (x > mat[mid][0]) {  row = mid;  lo = mid + 1;  }  // if x is smaller than first element of mid row  // search in upper half  else  hi = mid - 1;  }  // if x is smaller than all elements of mat[][]  if (row === -1)  return false;  return search(mat[row] x); } // Driver code const mat = [  [1 5 9]  [14 20 21]  [30 34 43] ]; const x = 14; if (searchMatrix(mat x))  console.log('true'); else  console.log('false'); 

出力
true

[想定されるアプローチ] 二分探索を 1 回使用 - O(log(n × m)) および O(1) 空間

このアイデアは、指定された行列を 1D 配列と見なし、二分探索を 1 回だけ適用することです。
たとえば、サイズが n x m の行列の場合、それをサイズ n*m の 1D 配列とみなすことができ、最初のインデックスは 0 になり、最後のインデックスは n*m-1 になります。したがって、low = 0 から high = (n*m-1) まで二分探索を行う必要があります。

2D行列でindex = Midに対応する要素を見つけるにはどうすればよいですか?

mat[][] の各行には m 個の要素があるため、 要素の (ミッド/メートル) そして カラム 要素の (中間%m) 。次に、各 Mid について x を arr[mid/m][mid%m] と比較し、二分探索を完了します。

C++
#include    #include  using namespace std; bool searchMatrix(vector<vector<int>>& mat int x) {  int n = mat.size() m = mat[0].size();  int lo = 0 hi = n * m - 1;  while (lo <= hi) {  int mid = (lo + hi) / 2;    // find row and column of element at mid index  int row = mid / m;  int col = mid % m;    // if x is found return true  if (mat[row][col] == x)   return true;    // if x is greater than mat[row][col] search   // in right half  if (mat[row][col] < x)   lo = mid + 1;    // if x is less than mat[row][col] search   // in left half  else   hi = mid - 1;  }  return false; } int main() {  vector<vector<int>> mat = {{1 5 9}   {14 20 21}   {30 34 43}};  int x = 14;  if (searchMatrix(mat x))  cout << 'true';  else  cout << 'false';  return 0; } 
Java
class GfG {  static boolean searchMatrix(int[][] mat int x) {  int n = mat.length m = mat[0].length;  int lo = 0 hi = n * m - 1;  while (lo <= hi) {  int mid = (lo + hi) / 2;  // find row and column of element at mid index  int row = mid / m;  int col = mid % m;  // if x is found return true  if (mat[row][col] == x)  return true;  // if x is greater than mat[row][col] search   // in right half  if (mat[row][col] < x)  lo = mid + 1;  // if x is less than mat[row][col] search   // in left half  else  hi = mid - 1;  }  return false;  }  public static void main(String[] args) {  int[][] mat = {{1 5 9}   {14 20 21}   {30 34 43}};  int x = 14;  if (searchMatrix(mat x))  System.out.println('true');  else  System.out.println('false');  } } 
Python
def searchMatrix(mat x): n = len(mat) m = len(mat[0]) lo hi = 0 n * m - 1 while lo <= hi: mid = (lo + hi) // 2 # find row and column of element at mid index row = mid // m col = mid % m # if x is found return true if mat[row][col] == x: return True # if x is greater than mat[row][col] search  # in right half if mat[row][col] < x: lo = mid + 1 # if x is less than mat[row][col] search  # in left half else: hi = mid - 1 return False if __name__ == '__main__': mat = [[1 5 9] [14 20 21] [30 34 43]] x = 14 if searchMatrix(mat x): print('true') else: print('false') 
C#
using System; class GfG {    // function to search for x in the matrix   // using binary search  static bool searchMatrix(int[] mat int x) {  int n = mat.GetLength(0) m = mat.GetLength(1);  int lo = 0 hi = n * m - 1;  while (lo <= hi) {  int mid = (lo + hi) / 2;  // find row and column of element at mid index  int row = mid / m;  int col = mid % m;  // if x is found return true  if (mat[row col] == x)  return true;  // if x is greater than mat[row col] search  // in right half  if (mat[row col] < x)  lo = mid + 1;  // if x is less than mat[row col] search   // in left half  else  hi = mid - 1;  }  return false;  }  static void Main() {  int[] mat = { { 1 5 9 } { 14 20 21 } { 30 34 43 } };  int x = 14;  if (searchMatrix(mat x))  Console.WriteLine('true');  else  Console.WriteLine('false');  } } 
JavaScript
function searchMatrix(mat x) {  let n = mat.length m = mat[0].length;  let lo = 0 hi = n * m - 1;  while (lo <= hi) {  let mid = Math.floor((lo + hi) / 2);  // find row and column of element at mid index  let row = Math.floor(mid / m);  let col = mid % m;  // if x is found return true  if (mat[row][col] === x)  return true;  // if x is greater than mat[row][col] search   // in right half  if (mat[row][col] < x)  lo = mid + 1;  // if x is less than mat[row][col] search   // in left half  else  hi = mid - 1;  }  return false; } // Driver Code let mat = [[1 5 9] [14 20 21] [30 34 43]]; let x = 14; if (searchMatrix(mat x))  console.log('true'); else  console.log('false'); 

出力
true
クイズの作成