対数は、特定の数値を得るために底を累乗する指数または累乗です。たとえば、x の場合、「a」は「x」を底とする「m」の対数です。メートル= a の場合、m = log と書くことができます。バツa.対数は計算を高速化するために発明されたもので、対数を使用して多くの桁を乗算するときに時間が短縮されます。さて、以下で対数の法則について説明しましょう。
対数の法則
指数の基本規則を使用して導出される対数の法則は 3 つあります。法則とは、積の法則、商の法則、べき乗の法則です。法律を詳しく見てみましょう。
対数第一法則または積則の法則
a = x としますnそして b = xメートルここで、基数 x はゼロより大きくなければなりませんが、x はゼロではありません。つまり、x> 0 および x ≠ 0 です。これから、次のように書くことができます。
n = ログバツa と m = 対数バツb ⇢ (1)
指数の第一法則を使用すると、x が次のことがわかります。n× ×メートル= xn + m⇢ (2)
ここで a と b を乗算すると、次のようになります。
ab = xn× ×メートル
ab = xn + m(式 2 より)
上の式に対数を適用すると、次のようになります。
ログバツab = n + m
方程式 1 から、対数として書くことができます。バツab = 対数バツ+ログバツb
したがって、2 つの数値を掛けてその積の対数を求めたい場合は、2 つの数値の個々の対数を加算します。これが対数・積則の法則の第一法則です。
ログ バツ ab = 対数 バツ +ログ バツ b
この法則は 3 つ以上の数字に適用できます。
ログ バツ abc = ログ バツ +ログ バツ b + ログ バツ c.
対数第 2 法則または商の法則
a = x としますnそして b = xメートルここで、基数 x はゼロより大きくなければなりませんが、x はゼロではありません。つまり、x> 0 および x ≠ 0 です。これから、次のように書くことができます。
Javaの部分文字列
n = ログバツa と m = 対数バツb ⇢ (1)
指数の第一法則を使用すると、x が次のことがわかります。n/ バツメートル= xn – m⇢ (2)
ここで a と b を乗算すると、次のようになります。
a/b = xn/ バツメートル
a/b = xn – m⇢ (式 2 より)
上の式に対数を適用すると、次のようになります。
ログバツ(a/b) = n – m
方程式 1 から、対数として書くことができます。バツ(a/b) = ログバツログバツb
したがって、2 つの数値を除算して除算の対数を求めたい場合は、2 つの数値の個々の対数を減算できます。これが対数・商の法則の第二法則です。
ログ バツ (a/b) = ログ バツ ログ バツ b
対数第三法則またはべき乗則
a = x としますn⇢ (i)、
フィズバズ ジャワ
ここで、基数 x はゼロより大きくなければなりませんが、x はゼロではありません。つまり、x> 0 および x ≠ 0 です。これから、次のように書くことができます。
n = ログバツあ⇢ (1)
方程式(i)の両辺を「m」乗で累乗すると、次のようになります。
あるメートル= (xn)メートル= xnm
しましょうメートル単一の量を指定し、上の方程式に対数を適用すると、
ログバツあるメートル= nm
ログ バツ ある メートル = m.log バツ ある
これが対数の第三法則です。べき数の対数は、その数の対数にその数を乗算することで得られると述べています。
サンプル問題
問題 1: ログ 21 を展開します。
解決:
私たちがそのログを知っているように、バツab = 対数バツ+ログバツb (対数第一法則より)
したがって、log 21 = log (3 × 7)
= log 3 + log 7
問題 2: ログ (125/64) を展開します。
解決:
私たちがそのログを知っているように、バツ(a/b) = ログバツログバツb (対数の第 2 法則より)
したがって、log (125/64) = log 125 – log 64
= ログ 53– ログ43
ログバツあるメートル= m.logバツa (対数の第 3 法則から)、次のように書くことができます。
= 3 log 5 – 3 log 4
= 3(log 5 – log 4)
問題 3: 3log 2 + 5 log3 – 5log 2 を単一の対数として書きます。
解決:
3log 2 + 5 log3 – 5log 2
= ログ 23+ログ35– ログ25
= log 8 + log 243 – log 32
= log(8 × 243) – log 32
= ログ 1944 – ログ 32
=ログ(1944/32)
問題 4: log 16 – log 2 を単一の対数として記述します。
解決:
ログ(16/2)
= ログ(8)
= log(23)
= 3 log 2
問題 5: 3 log 4 を単一の対数として書きます
解決:
べき乗則の法則から、次のように書くことができます。
小さじ対大さじ= ログ 43
= ログ64
問題 6: 2 log 3- 3 log 2 を単一の対数として書きます
解決:
ログ32– ログ23
= ログ 9 – ログ 8
=ログ(9/8)
問題 7: log 243 + log 1 を単一の対数として書き込みます
解決:
丸太(243×1)
=ログ243