logo

ナイトがチェス盤に残る確率

GfG Practice で試してみる ' title=

与えられた n*n チェス盤 そして 騎士 位置 (x y) ナイトが移動するたびに、8 つの可能な移動のうち 1 つを均等に選択します。 ランダム (たとえ駒がチェス盤から外れてしまったとしても) 動く そこには。騎士 続く 正確に完成するまで移動する k 動いている、または持っている 引っ越した チェス盤。課題は次のとおりです 探す 確率 その騎士は 残っている ボード それが終わった後 止まった 動いている。

注記: チェスのナイトは 8 つの可能な手を打つことができます。各移動は基本方向に 2 セル、次に直交方向に 1 セルです。

例:  



入力: n = 8 x = 0 y = 0 k = 1
出力: 0.25
説明: ナイトは (0 0) から始まり、一歩を踏み出した後、ボード内の 8 つの位置のうち (1 2) と (2 1) の 2 つだけになります。したがって、確率は 2/8 = 0.25 となります。

入力: n = 8 x = 0 y = 0 k = 3
出力: 0.125

入力: n = 4 x = 1 y = 2 k = 4
出力: 0.024414

目次

トップダウン Dp (メモ化) の使用 - O(n*n*k) 時間と O(n*n*k) スペース

k 回移動した後にナイトがチェス盤に残る確率は、k - 1 回移動した後の前の 8 つの位置にあるナイトの確率の平均に等しくなります。同様に、k-1 回移動後の確率は、k-2 回移動後の確率の平均に依存します。アイデアは使用することです メモ化 以前の手の確率を保存し、その平均を見つけて最終結果を計算します。
そのためには、 3D配列メモ[][][] どこ メモ[i][j][k] k が移動した後にナイトがセル (i j) に存在する確率を格納します。 k がゼロの場合、つまり初期状態に達した場合 1を返す それ以外の場合は、前の 8 つの位置を調べて、それらの確率の平均を見つけます。

C++
// C++ program to find the probability of the // knight to remain inside the chessboard #include    using namespace std; // recursive function to calculate // knight probability double knightProbability(int n int x int y int k   vector<vector<vector<double>>> &memo){  // Base case initial probability  if(k == 0) return 1.0;  // check if already calculated  if(memo[x][y][k] != -1) return memo[x][y][k];  vector<vector<int>> directions = {{1 2} {2 1} {2 -1}  {1 -2} {-1 -2} {-2 -1} {-2 1} {-1 2}};  memo[x][y][k] = 0;  double cur = 0.0;  // for every position reachable from (xy)  for(auto d:directions){  int u = x + d[0];  int v = y + d[1];  // if this position lie inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += knightProbability(n u v k-1 memo) / 8.0;  }  return memo[x][y][k] = cur; } // Function to find the probability double findProb(int n int x int y int k) {  // Initialize memo to store results  vector<vector<vector<double>>> memo(n   vector<vector<double>>(n  vector<double> (k+1 -1)));  return knightProbability(n x y k memo); } int main(){  int n = 8 x = 0 y = 0 k = 3;  cout << findProb(n x y k) << endl;  return 0; } 
Java
// Java program to find the probability of the // knight to remain inside the chessboard class GfG {  // recursive function to calculate  // knight probability  static double knightProbability(int n int x   int y int k double[][][] memo) {  // Base case initial probability  if (k == 0) return 1.0;  // check if already calculated  if (memo[x][y][k] != -1) return memo[x][y][k];  int[][] directions = {{1 2} {2 1} {2 -1} {1 -2}  {-1 -2} {-2 -1} {-2 1} {-1 2}};  memo[x][y][k] = 0;  double cur = 0.0;  // for every position reachable from (x y)  for (int[] d : directions) {  int u = x + d[0];  int v = y + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += knightProbability(n u v k - 1 memo) / 8.0;  }  return memo[x][y][k] = cur;  }  // Function to find the probability  static double findProb(int n int x int y int k) {  // Initialize memo to store results  double[][][] memo = new double[n][n][k + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  for (int m = 0; m <= k; m++) {  memo[i][j][m] = -1;  }  }  }  return knightProbability(n x y k memo);  }  public static void main(String[] args) {  int n = 8 x = 0 y = 0 k = 3;  System.out.println(findProb(n x y k));  } } 
Python
# Python program to find the probability of the # knight to remain inside the chessboard # recursive function to calculate # knight probability def knightProbability(n x y k memo): # Base case initial probability if k == 0: return 1.0 # check if already calculated if memo[x][y][k] != -1: return memo[x][y][k] directions = [ [1 2] [2 1] [2 -1] [1 -2] [-1 -2] [-2 -1] [-2 1] [-1 2] ] memo[x][y][k] = 0 cur = 0.0 # for every position reachable from (x y) for d in directions: u = x + d[0] v = y + d[1] # if this position lies inside the board if 0 <= u < n and 0 <= v < n: cur += knightProbability(n u v k - 1 memo) / 8.0 memo[x][y][k] = cur return cur # Function to find the probability def findProb(n x y k): # Initialize memo to store results memo = [[[-1 for _ in range(k + 1)] for _ in range(n)] for _ in range(n)] return knightProbability(n x y k memo) n x y k = 8 0 0 3 print(findProb(n x y k)) 
C#
// C# program to find the probability of the // knight to remain inside the chessboard using System; class GfG {  // recursive function to calculate  // knight probability  static double KnightProbability(int n int x   int y int k double[] memo) {  // Base case initial probability  if (k == 0) return 1.0;  // check if already calculated  if (memo[x y k] != -1) return memo[x y k];  int[] directions = {{1 2} {2 1} {2 -1} {1 -2}  {-1 -2} {-2 -1} {-2 1} {-1 2}};  memo[x y k] = 0;  double cur = 0.0;  // for every position reachable from (x y)  for (int i = 0; i < 8; i++) {  int u = x + directions[i 0];  int v = y + directions[i 1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += KnightProbability(n u v k - 1 memo) / 8.0;  }  }  return memo[x y k] = cur;  }  // Function to find the probability  static double FindProb(int n int x int y int k) {  // Initialize memo to store results  double[] memo = new double[n n k + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  for (int m = 0; m <= k; m++) {  memo[i j m] = -1;  }  }  }  return KnightProbability(n x y k memo);  }  static void Main() {  int n = 8 x = 0 y = 0 k = 3;  Console.WriteLine(FindProb(n x y k));  } } 
JavaScript
// JavaScript program to find the probability of the // knight to remain inside the chessboard // recursive function to calculate // knight probability function knightProbability(n x y k memo) {  // Base case initial probability  if (k === 0) return 1.0;  // check if already calculated  if (memo[x][y][k] !== -1) return memo[x][y][k];  const directions = [  [1 2] [2 1] [2 -1] [1 -2]  [-1 -2] [-2 -1] [-2 1] [-1 2]  ];  memo[x][y][k] = 0;  let cur = 0.0;  // for every position reachable from (x y)  for (let d of directions) {  const u = x + d[0];  const v = y + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += knightProbability(n u v k - 1 memo) / 8.0;  }  }  return memo[x][y][k] = cur; } // Function to find the probability function findProb(n x y k) {  // Initialize memo to store results  const memo = Array.from({ length: n } () =>  Array.from({ length: n } () => Array(k + 1).fill(-1)));  return knightProbability(n x y k memo).toFixed(6); } const n = 8 x = 0 y = 0 k = 3;  console.log(findProb(n x y k)); 

出力
0.125 

ボトムアップ Dp (表作成) の使用 - O(n*n*k) 時間と O(n*n*k) 空間

上記のアプローチは、次を使用して最適化できます。 ボトムアップ 表作成により、再帰スタックに必要な余分なスペースが削減されます。アイデアは 3 を維持することです D 配列 dp[][][] どこ dp[i][j][k] ナイトがセルにいる確率を保存します (i j) k 動きます。を初期化します 0位 の状態 DP 価値のあるもの 1 。後続の移動ごとに、 確率 の騎士になります 等しい 平均 の確率 前の 後の 8 ポジション k-1 動きます。

C++
// C++ program to find the probability of the // knight to remain inside the chessboard #include    using namespace std; // Function to find the probability double findProb(int n int x int y int k) {  // Initialize dp to store results of each step  vector<vector<vector<double>>> dp(n   vector<vector<double>>(n  vector<double> (k+1)));    // Initialize dp for step 0  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  dp[i][j][0] = 1.0;  }  }  vector<vector<int>> directions = {  {1 2} {2 1} {2 -1} {1 -2}   {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {    // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (xy)  for (auto d:directions) {  int u = i + d[0];  int v = j + d[1];  // if this position lie inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += dp[u][v][move - 1] / 8.0;  }  // store the result  dp[i][j][move] = cur;  }  }  }  // return the result  return dp[x][y][k]; } int main(){  int n = 8 x = 0 y = 0 k = 3;  cout << findProb(n x y k) << endl;  return 0; } 
Java
// Java program to find the probability of the // knight to remain inside the chessboard import java.util.*; class GfG {  // Function to find the probability  static double findProb(int n int x int y int k) {  // Initialize dp to store results of each step  double[][][] dp = new double[n][n][k + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  dp[i][j][0] = 1;  }  }  int[][] directions = {  {1 2} {2 1} {2 -1} {1 -2}   {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {  // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (x y)  for (int[] d : directions) {  int u = i + d[0];  int v = j + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += dp[u][v][move - 1] / 8.0;  }  }  // store the result  dp[i][j][move] = cur;  }  }  }  // return the result  return dp[x][y][k];  }  public static void main(String[] args) {  int n = 8 x = 0 y = 0 k = 3;  System.out.println(findProb(n x y k));  } } 
Python
# Python program to find the probability of the # knight to remain inside the chessboard # Function to find the probability def findProb(n x y k): # Initialize dp to store results of each step dp = [[[0 for _ in range(k + 1)] for _ in range(n)] for _ in range(n)] for i in range(n): for j in range(n): dp[i][j][0] = 1.0 directions = [[1 2] [2 1] [2 -1] [1 -2] [-1 -2] [-2 -1] [-2 1] [-1 2]] for move in range(1 k + 1): # find probability for cell (i j) for i in range(n): for j in range(n): cur = 0.0 # for every position reachable from (x y) for d in directions: u = i + d[0] v = j + d[1] # if this position lies inside the board if 0 <= u < n and 0 <= v < n: cur += dp[u][v][move - 1] / 8.0 # store the result dp[i][j][move] = cur # return the result return dp[x][y][k] if __name__ == '__main__': n x y k = 8 0 0 3 print(findProb(n x y k)) 
C#
// C# program to find the probability of the // knight to remain inside the chessboard using System; class GfG {  // Function to find the probability  static double findProb(int n int x int y int k) {  // Initialize dp to store results of each step  double[] dp = new double[n n k + 1];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  dp[i j 0] = 1.0;  }  }  int[] directions = {{1 2} {2 1} {2 -1} {1 -2}   {-1 -2} {-2 -1} {-2 1} {-1 2}};  for (int move = 1; move <= k; move++) {  // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (x y)  for (int d = 0; d < directions.GetLength(0); d++) {  int u = i + directions[d 0];  int v = j + directions[d 1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += dp[u v move - 1] / 8.0;  }  }  // store the result  dp[i j move] = cur;  }  }  }  // return the result  return dp[x y k];  }  static void Main(string[] args) {  int n = 8 x = 0 y = 0 k = 3;  Console.WriteLine(findProb(n x y k));  } } 
JavaScript
// JavaScript program to find the probability of the // knight to remain inside the chessboard // Function to find the probability function findProb(n x y k) {  // Initialize dp to store results of each step  let dp = Array.from({ length: n } () =>   Array.from({ length: n } () => Array(k + 1).fill(0))  );  // Initialize dp for step 0  for (let i = 0; i < n; ++i) {  for (let j = 0; j < n; ++j) {  dp[i][j][0] = 1.0;  }  }    let directions = [[1 2] [2 1] [2 -1] [1 -2]   [-1 -2] [-2 -1] [-2 1] [-1 2]];  for (let move = 1; move <= k; move++) {    // find probability for cell (i j)  for (let i = 0; i < n; i++) {  for (let j = 0; j < n; j++) {  let cur = 0.0;  // for every position reachable from (x y)  for (let d of directions) {  let u = i + d[0];  let v = j + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n) {  cur += dp[u][v][move - 1] / 8.0;  }  }  // store the result  dp[i][j][move] = cur;  }  }  }  // return the result  return dp[x][y][k].toFixed(6); } let n = 8 x = 0 y = 0 k = 3; console.log(findProb(n x y k)); 

出力
0.125 

スペース最適化 Dp の使用 - O(n*n*k) 時間と O(n*n) スペース

上記のアプローチ 必要 のみ 前の を計算する確率の状態 現在 このように述べます のみ 前の ストアを保存する必要があります。アイデアは2つ作成することです 2D 配列 そして currMove[][] どこ

  • prevMove[i][j] は、前の移動までにナイトが (i j) にいた確率を格納します。初期状態の値 1 で初期化されます。
  • currMove[i][j] は現在の状態の確率を格納します。

上記のアプローチと同様に操作します。 終わり 各反復の prevMove[][] を更新します に値が保存されている currMove[][]。

C++
// C++ program to find the probability of the // knight to remain inside the chessboard #include    using namespace std; // Function to find the probability double findProb(int n int x int y int k) {  // dp to store results of previous move  vector<vector<double>> prevMove(n vector<double>(n 1));  // dp to store results of current move  vector<vector<double>> currMove(n vector<double>(n 0));  vector<vector<int>> directions = {  {1 2} {2 1} {2 -1} {1 -2}   {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {    // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (xy)  for (auto d:directions) {  int u = i + d[0];  int v = j + d[1];  // if this position lie inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += prevMove[u][v] / 8.0;  }  // store the result  currMove[i][j] = cur;  }  }  // update previous state  prevMove = currMove;  }  // return the result  return prevMove[x][y]; } int main(){  int n = 8 x = 0 y = 0 k = 3;  cout << findProb(n x y k) << endl;  return 0; } 
Java
// Java program to find the probability of the // knight to remain inside the chessboard class GfG {  // Function to find the probability  static double findProb(int n int x int y int k) {  // dp to store results of previous move  double[][] prevMove = new double[n][n];  for (int i = 0; i < n; i++) {  for (int j = 0; j < n; j++) {  prevMove[i][j] = 1.0;  }  }  // dp to store results of current move  double[][] currMove = new double[n][n];  int[][] directions = {  {1 2} {2 1} {2 -1} {1 -2}  {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {  // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (xy)  for (int[] d : directions) {  int u = i + d[0];  int v = j + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += prevMove[u][v] / 8.0;  }  // store the result  currMove[i][j] = cur;  }  }  // update previous state  for (int i = 0; i < n; i++) {  System.arraycopy(currMove[i] 0 prevMove[i] 0 n);  }  }  // return the result  return prevMove[x][y];  }  public static void main(String[] args) {  int n = 8 x = 0 y = 0 k = 3;  System.out.println(findProb(n x y k));  } } 
Python
# Python program to find the probability of the # knight to remain inside the chessboard def findProb(n x y k): # dp to store results of previous move prevMove = [[1.0] * n for _ in range(n)] # dp to store results of current move currMove = [[0.0] * n for _ in range(n)] directions = [ [1 2] [2 1] [2 -1] [1 -2] [-1 -2] [-2 -1] [-2 1] [-1 2] ] for move in range(1 k + 1): # find probability for cell (i j) for i in range(n): for j in range(n): cur = 0.0 # for every position reachable from (xy) for d in directions: u v = i + d[0] j + d[1] # if this position lies inside the board if 0 <= u < n and 0 <= v < n: cur += prevMove[u][v] / 8.0 # store the result currMove[i][j] = cur # update previous state prevMove = [row[:] for row in currMove] # return the result return prevMove[x][y] if __name__ == '__main__': n x y k = 8 0 0 3 print(findProb(n x y k)) 
C#
// C# program to find the probability of the // knight to remain inside the chessboard using System; class GfG {  // Function to find the probability  static double findProb(int n int x int y int k) {  // dp to store results of previous move  double[] prevMove = new double[n n];  for (int i = 0; i < n; i++)  for (int j = 0; j < n; j++)  prevMove[i j] = 1.0;  // dp to store results of current move  double[] currMove = new double[n n];  int[] directions = {  {1 2} {2 1} {2 -1} {1 -2}  {-1 -2} {-2 -1} {-2 1} {-1 2}  };  for (int move = 1; move <= k; move++) {  // find probability for cell (i j)  for (int i = 0; i < n; ++i) {  for (int j = 0; j < n; ++j) {  double cur = 0.0;  // for every position reachable from (xy)  for (int d = 0; d < directions.GetLength(0); d++) {  int u = i + directions[d 0];  int v = j + directions[d 1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += prevMove[u v] / 8.0;  }  // store the result  currMove[i j] = cur;  }  }  // update previous state  Array.Copy(currMove prevMove n * n);  }  // return the result  return prevMove[x y];  }  static void Main() {  int n = 8 x = 0 y = 0 k = 3;  Console.WriteLine(findProb(n x y k));  } } 
JavaScript
// JavaScript program to find the probability of the // knight to remain inside the chessboard function findProb(n x y k) {  // dp to store results of previous move  let prevMove = Array.from({ length: n }   () => Array(n).fill(1.0));  // dp to store results of current move  let currMove = Array.from({ length: n }   () => Array(n).fill(0.0));  const directions = [  [1 2] [2 1] [2 -1] [1 -2]  [-1 -2] [-2 -1] [-2 1] [-1 2]  ];  for (let move = 1; move <= k; move++) {  // find probability for cell (i j)  for (let i = 0; i < n; i++) {  for (let j = 0; j < n; j++) {  let cur = 0.0;  // for every position reachable from (xy)  for (let d of directions) {  let u = i + d[0];  let v = j + d[1];  // if this position lies inside the board  if (u >= 0 && u < n && v >= 0 && v < n)  cur += prevMove[u][v] / 8.0;  }  // store the result  currMove[i][j] = cur;  }  }  // update previous state  prevMove = currMove.map(row => [...row]);  }  // return the result  return prevMove[x][y].toFixed(6); } let n = 8 x = 0 y = 0 k = 3; console.log(findProb(n x y k)); 

出力
0.125 
クイズの作成