2 つの整数が与えられた場合 mとn それは順序を説明します ん マトリックスの とともに[][] 最初は 満たされた からの整数を使用して 1からm*nまで 順番に 行優先の順序 。また、 2次元 配列 クエリ[][] からなる q クエリ 含まれている 三つ それぞれ整数 初め 整数 t について説明します タイプ クエリと 次 2 つの整数 × そして そして を説明する 行 または カラム そうである必要がある 操作された 。課題は次のとおりです プロセス これら q クエリの操作 とともに[][]。 毎 クエリ 次の 3 つのタイプのいずれかです。
- [1xy]: 交換する × 番目 そして そして 番目 mat[][] の行。
- [2xy]: 交換する × 番目 そして そして 番目 mat[][] の列。
- [3xy]: を印刷します 要素 で × 番目 列と そして 番目 mat[][]の列。
例:
入力: m = 3 n = 3
クエリ[][] = [[1 0 1]
[3 0 0]
[3 1 0]
[2 0 1]
[3 0 0]
[3 1 0]]C言語の行列出力: 4 1 5 2
説明: 最初の行列は次のとおりです。
with[][] = [[1 2 3]
[4 5 6]
[7 8 9]]
最初の操作 [1 0 1] : 行 0 と行 1 を交換する必要があります。
この演算の後、行列は次のようになります。
with[][] =[[4 5 6]
[1 2 3]
[7 8 9]]
次の 2 つの操作では、指定されたセルの要素を出力する必要があります。
4 番目の操作 [2 0 1]: 列 0 と列 1 を交換する必要があります。
この演算の後、行列は次のようになります。
with[][] =[[5 4 6]
[2 1 3]
[8 7 9]]
次の 2 つの操作では、指定されたセルの要素を出力する必要があります。
目次
[素朴なアプローチ] - O(q*n) 時間と O(m*n) 空間
C++アイデアは次のとおりです 作成する マトリックス とともに[][] 秩序ある ん 最初は 満たされた からの整数を使用して 1からm*nまで 順番に 行優先の順序 。 のお問い合わせについては、 タイプ1 そして 2 つまり スワップ トラバース 必要な行または列を選択し、その各要素を交換します。そして、の問い合わせに対して、 タイプ3 つまり 印刷する 指定されたインデックスの要素を印刷するだけです。
// C++ Program to perform queries in a matrix. #include using namespace std; // function to swap rows of the matrix. void swapRows(vector<vector<int>> &mat int r1 int r2) { for (int i = 0; i < mat[0].size(); i++) { swap(mat[r1][i] mat[r2][i]); } } // function to swap columns of the matrix. void swapCols(vector<vector<int>> &mat int c1 int c2) { for (int i = 0; i < mat.size(); i++) { swap(mat[i][c1] mat[i][c2]); } } // function to operate queries. void solveQueries(int m int n vector<vector<int>> &query) { // create a matrix or order m*n filled with // values from 1 to m*n. vector<vector<int>> mat(m vector<int>(n)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { mat[i][j] = (i * n) + j + 1; } } // perform the queries on the matrix. for (int i = 0; i < query.size(); i++) { // if query is of type 1 // swap the rows. if (query[i][0] == 1) { swapRows(mat query[i][1] query[i][2]); } // if query is of type 2 // swap the columns. else if (query[i][0] == 2) { swapCols(mat query[i][1] query[i][2]); } // if query is of type 3 // print the value at the given index. else { cout << mat[query[i][1]][query[i][2]] << ' '; } } } int main() { int m = 3 n = 3; vector<vector<int>> query = {{1 0 1} {3 0 0} {3 1 0} {2 0 1} {3 0 0} {3 1 0}}; solveQueries(m n query); return 0; }
Java // Java Program to perform queries in a matrix. import java.util.*; class GfG { // function to swap rows of the matrix. static void swapRows(int[][] mat int r1 int r2) { for (int i = 0; i < mat[0].length; i++) { int temp = mat[r1][i]; mat[r1][i] = mat[r2][i]; mat[r2][i] = temp; } } // function to swap columns of the matrix. static void swapCols(int[][] mat int c1 int c2) { for (int i = 0; i < mat.length; i++) { int temp = mat[i][c1]; mat[i][c1] = mat[i][c2]; mat[i][c2] = temp; } } // function to operate queries. static void solveQueries(int m int n int[][] query) { // create a matrix or order m*n filled with // values from 1 to m*n. int[][] mat = new int[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { mat[i][j] = (i * n) + j + 1; } } // perform the queries on the matrix. for (int i = 0; i < query.length; i++) { // if query is of type 1 // swap the rows. if (query[i][0] == 1) { swapRows(mat query[i][1] query[i][2]); } // if query is of type 2 // swap the columns. else if (query[i][0] == 2) { swapCols(mat query[i][1] query[i][2]); } // if query is of type 3 // print the value at the given index. else { System.out.print(mat[query[i][1]][query[i][2]] + ' '); } } } public static void main(String[] args) { int m = 3 n = 3; int[][] query = { {1 0 1} {3 0 0} {3 1 0} {2 0 1} {3 0 0} {3 1 0} }; solveQueries(m n query); } }
Python # Python Program to perform queries in a matrix. # function to swap rows of the matrix. def swapRows(mat r1 r2): mat[r1] mat[r2] = mat[r2] mat[r1] # function to swap columns of the matrix. def swapCols(mat c1 c2): for row in mat: row[c1] row[c2] = row[c2] row[c1] # function to operate queries. def solveQueries(m n query): # create a matrix of order m*n filled with # values from 1 to m*n. mat = [[(i * n) + j + 1 for j in range(n)] for i in range(m)] # perform the queries on the matrix. for q in query: # if query is of type 1 # swap the rows. if q[0] == 1: swapRows(mat q[1] q[2]) # if query is of type 2 # swap the columns. elif q[0] == 2: swapCols(mat q[1] q[2]) # if query is of type 3 # print the value at the given index. else: print(mat[q[1]][q[2]] end=' ') if __name__ == '__main__': m n = 3 3 query = [ [1 0 1] [3 0 0] [3 1 0] [2 0 1] [3 0 0] [3 1 0] ] solveQueries(m n query)
C# // C# Program to perform queries in a matrix. using System; class GfG { // function to swap rows of the matrix. static void SwapRows(int[] mat int r1 int r2) { for (int i = 0; i < mat.GetLength(1); i++) { int temp = mat[r1 i]; mat[r1 i] = mat[r2 i]; mat[r2 i] = temp; } } // function to swap columns of the matrix. static void SwapCols(int[] mat int c1 int c2) { for (int i = 0; i < mat.GetLength(0); i++) { int temp = mat[i c1]; mat[i c1] = mat[i c2]; mat[i c2] = temp; } } // function to operate queries. static void SolveQueries(int m int n int[][] query) { // create a matrix or order m*n filled with // values from 1 to m*n. int[] mat = new int[m n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { mat[i j] = (i * n) + j + 1; } } // perform the queries on the matrix. for (int i = 0; i < query.Length; i++) { // if query is of type 1 // swap the rows. if (query[i][0] == 1) { SwapRows(mat query[i][1] query[i][2]); } // if query is of type 2 // swap the columns. else if (query[i][0] == 2) { SwapCols(mat query[i][1] query[i][2]); } // if query is of type 3 // print the value at the given index. else { Console.Write(mat[query[i][1] query[i][2]] + ' '); } } } static void Main(string[] args) { int m = 3 n = 3; int[][] query = { new int[] { 1 0 1 } new int[] { 3 0 0 } new int[] { 3 1 0 } new int[] { 2 0 1 } new int[] { 3 0 0 } new int[] { 3 1 0 } }; SolveQueries(m n query); } }
JavaScript // JavaScript Program to perform queries in a matrix. // function to swap rows of the matrix. function swapRows(mat r1 r2) { [mat[r1] mat[r2]] = [mat[r2] mat[r1]]; } // function to swap columns of the matrix. function swapCols(mat c1 c2) { for (let i = 0; i < mat.length; i++) { [mat[i][c1] mat[i][c2]] = [mat[i][c2] mat[i][c1]]; } } // function to operate queries. function solveQueries(m n query) { // create a matrix or order m*n filled with // values from 1 to m*n. const mat = Array.from({ length: m } (_ i) => Array.from({ length: n } (_ j) => i * n + j + 1) ); // perform the queries on the matrix. for (const q of query) { // if query is of type 1 // swap the rows. if (q[0] === 1) { swapRows(mat q[1] q[2]); } // if query is of type 2 // swap the columns. else if (q[0] === 2) { swapCols(mat q[1] q[2]); } // if query is of type 3 // print the value at the given index. else { console.log(mat[q[1]][q[2]] + ' '); } } } // driver code const m = 3 n = 3; const query = [ [1 0 1] [3 0 0] [3 1 0] [2 0 1] [3 0 0] [3 1 0] ]; solveQueries(m n query);
出力
4 1 5 2
時間計算量: タイプ 1 および 2 の q クエリを実行するには O(q*n) が必要です。
補助スペース: 行列の作成には O(m*n) 個の補助スペースが必要です とともに[][] m*n のオーダーです。
正規表現Java
[想定されるアプローチ] - O(q) 時間と O(m + n) 空間
の 要素 どの位置でも マット[x][y] 行列内の は mat[x][y] = として記述できます。 (n*x) + y + 1 どこ n の数です 列 。マトリックスを直接変更する代わりに、次を使用できます。 二 補助 配列行[m] そして 列[n] 。の 行 配列は 初期化された からの値を使用して に m-1 行のインデックスを表し、 コル 配列は 初期化された からの値を使用して に n-1 列のインデックスを表します。
のクエリを処理するには タイプ1 どちらを交換するか 行 × そして そして 私たちは単に スワップ の 価値観 の 行[x] そして 行[y]。 のクエリについても同様に、 タイプ2 どちらを交換するか 列 × そして そして 私たちは スワップ の 価値観 の 列[x] そして 列[y] 。のクエリについては、 タイプ3 どれの 印刷する の 価値 位置で (x y) 次の式を使用して位置を計算します mat[x][y] = rows[x]*n +cols[y] + 1。
以下は上記のアイデアの実装です。
C++// C++ Program to perform queries in a matrix. #include using namespace std; // function to operate queries. void solveQueries(int m int n vector<vector<int>> &query) { // create two arrays rows and cols // and fill the value from 0 to size-1 vector<int> rows(m) cols(n); for(int i = 0; i < m; i++) { rows[i] = i; } for(int i = 0; i < n; i++) { cols[i] = i; } // perform the queries on the matrix. for (int i = 0; i < query.size(); i++) { // if query is of type 1 // swap the rows. if (query[i][0] == 1) { swap(rows[query[i][1]] rows[query[i][2]]); } // if query is of type 2 // swap the columns. else if (query[i][0] == 2) { swap(cols[query[i][1]] cols[query[i][2]]); } // if query is of type 3 // print the value at the given index. else { cout<< (rows[query[i][1]] * n) + cols[query[i][2]] + 1 << ' '; } } } int main() { int m = 3 n = 3; vector<vector<int>> query = {{1 0 1} {3 0 0} {3 1 0} {2 0 1} {3 0 0} {3 1 0}}; solveQueries(m n query); return 0; }
Java // Java Program to perform queries in a matrix. import java.util.*; class GfG { // function to operate queries. static void solveQueries(int m int n int[][] query) { // create two arrays rows and cols // and fill the value from 0 to size-1 int[] rows = new int[m]; int[] cols = new int[n]; for (int i = 0; i < m; i++) { rows[i] = i; } for (int i = 0; i < n; i++) { cols[i] = i; } // perform the queries on the matrix. for (int i = 0; i < query.length; i++) { // if query is of type 1 // swap the rows. if (query[i][0] == 1) { int temp = rows[query[i][1]]; rows[query[i][1]] = rows[query[i][2]]; rows[query[i][2]] = temp; } // if query is of type 2 // swap the columns. else if (query[i][0] == 2) { int temp = cols[query[i][1]]; cols[query[i][1]] = cols[query[i][2]]; cols[query[i][2]] = temp; } // if query is of type 3 // print the value at the given index. else { System.out.print((rows[query[i][1]]*n + cols[query[i][2]] + 1) + ' '); } } } public static void main(String[] args) { int m = 3 n = 3; int[][] query = { {1 0 1} {3 0 0} {3 1 0} {2 0 1} {3 0 0} {3 1 0} }; solveQueries(m n query); } }
Python # Python Program to perform queries in a matrix. # function to operate queries. def solveQueries(m n query): # create two arrays rows and cols # and fill the value from 0 to size-1 rows = [i for i in range(m)] cols = [i for i in range(n)] # perform the queries on the matrix. for q in query: # if query is of type 1 # swap the rows. if q[0] == 1: rows[q[1]] rows[q[2]] = rows[q[2]] rows[q[1]] # if query is of type 2 # swap the columns. elif q[0] == 2: cols[q[1]] cols[q[2]] = cols[q[2]] cols[q[1]] # if query is of type 3 # print the value at the given index. else: print((rows[q[1]] * n) + cols[q[2]] + 1 end=' ') if __name__ == '__main__': m n = 3 3 query = [ [1 0 1] [3 0 0] [3 1 0] [2 0 1] [3 0 0] [3 1 0] ] solveQueries(m n query)
C# // C# Program to perform queries in a matrix. using System; class GfG { // function to operate queries. static void SolveQueries(int m int n int[][] query) { // create two arrays rows and cols // and fill the value from 0 to size-1 int[] rows = new int[m]; int[] cols = new int[n]; for(int i = 0; i < m; i++) { rows[i] = i; } for(int i = 0; i < n; i++) { cols[i] = i; } // perform the queries on the matrix. for (int i = 0; i < query.Length; i++) { // if query is of type 1 // swap the rows. if (query[i][0] == 1) { int temp = rows[query[i][1]]; rows[query[i][1]] = rows[query[i][2]]; rows[query[i][2]] = temp; } // if query is of type 2 // swap the columns. else if (query[i][0] == 2) { int temp = cols[query[i][1]]; cols[query[i][1]] = cols[query[i][2]]; cols[query[i][2]] = temp; } // if query is of type 3 // print the value at the given index. else { Console.Write((rows[query[i][1]]*n + cols[query[i][2]] + 1) + ' '); } } } static void Main(string[] args) { int m = 3 n = 3; int[][] query = { new int[] { 1 0 1 } new int[] { 3 0 0 } new int[] { 3 1 0 } new int[] { 2 0 1 } new int[] { 3 0 0 } new int[] { 3 1 0 } }; SolveQueries(m n query); } }
JavaScript // JavaScript Program to perform queries in a matrix. // function to operate queries. function solveQueries(m n query) { // create two arrays rows and cols // and fill the value from 0 to size-1 let rows = new Array(m); let cols = new Array(n); for (let i = 0; i < m; i++) { rows[i] = i; } for (let i = 0; i < n; i++) { cols[i] = i; } // perform the queries on the matrix. for (const q of query) { // if query is of type 1 // swap the rows. if (q[0] === 1) { [rows[q[1]] rows[q[2]]] = [rows[q[2]] rows[q[1]]]; } // if query is of type 2 // swap the columns. else if (q[0] === 2) { [cols[q[1]] cols[q[2]]] = [cols[q[2]] cols[q[1]]]; } // if query is of type 3 // print the value at the given index. else { process.stdout.write(((rows[q[1]] * n) + cols[q[2]] + 1) + ' '); } } } const m = 3 n = 3; const query = [ [1 0 1] [3 0 0] [3 1 0] [2 0 1] [3 0 0] [3 1 0] ]; solveQueries(m n query);
出力
4 1 5 2
時間計算量: O(q) q = クエリの数
補助スペース: 2 つの配列を作成するには O(m + n) の補助スペースが必要です。