数値を与える n 1 から n までの各数値で均等に割り切れる最小の数を見つけます。
例:
Input : n = 4 Output : 12 Explanation : 12 is the smallest numbers divisible by all numbers from 1 to 4 Input : n = 10 Output : 2520 Input : n = 20 Output : 232792560
よく観察してみると、 年 でなければなりません 1 から n までの数の最小公倍数 。
1 から n までの数値の最小公倍数を求めるには -
- ans = 1 に初期化します。
- i = 1 から i = n までのすべての数値を繰り返します。
i 回目の反復時 ans = LCM(1 2 …….. i) 。これは次のように簡単に実行できます LCM(1 2 …. i) = LCM(ans i) 。
したがって、i 回目の反復では、次のことを行うだけです -
ans = LCM(ans i) = ans * i / gcd(ans i) [Using the below property a*b = gcd(ab) * lcm(ab)]
注記 : C++ コードでは、答えはすぐに整数の制限を超え、さらに Long Long の制限を超えます。
以下はロジックの実装です。
C++
// C++ program to find smallest number evenly divisible by // all numbers 1 to n #include using namespace std; // Function returns the lcm of first n numbers long long lcm(long long n) { long long ans = 1; for (long long i = 1; i <= n; i++) ans = (ans * i)/(__gcd(ans i)); return ans; } // Driver program to test the above function int main() { long long n = 20; cout << lcm(n); return 0; }
Java // Java program to find the smallest number evenly divisible by // all numbers 1 to n class GFG{ static long gcd(long a long b) { if(a%b != 0) return gcd(ba%b); else return b; } // Function returns the lcm of first n numbers static long lcm(long n) { long ans = 1; for (long i = 1; i <= n; i++) ans = (ans * i)/(gcd(ans i)); return ans; } // Driver program to test the above function public static void main(String []args) { long n = 20; System.out.println(lcm(n)); } }
Python # Python program to find the smallest number evenly # divisible by all number 1 to n import math # Returns the lcm of first n numbers def lcm(n): ans = 1 for i in range(1 n + 1): ans = int((ans * i)/math.gcd(ans i)) return ans # main n = 20 print (lcm(n))
C# // C# program to find smallest number // evenly divisible by // all numbers 1 to n using System; public class GFG{ static long gcd(long a long b) { if(a%b != 0) return gcd(ba%b); else return b; } // Function returns the lcm of first n numbers static long lcm(long n) { long ans = 1; for (long i = 1; i <= n; i++) ans = (ans * i)/(gcd(ans i)); return ans; } // Driver program to test the above function static public void Main (){ long n = 20; Console.WriteLine(lcm(n)); } //This code is contributed by akt_mit }
Javascript // Javascript program to find the smallest number evenly divisible by // all numbers 1 to n function gcd(a b) { if(a%b != 0) return gcd(ba%b); else return b; } // Function returns the lcm of first n numbers function lcm(n) { let ans = 1; for (let i = 1; i <= n; i++) ans = (ans * i)/(gcd(ans i)); return ans; } // function call let n = 20; console.log(lcm(n));
PHP // Note: This code is not working on GFG-IDE // because gmp libraries are not supported // PHP program to find smallest number // evenly divisible by all numbers 1 to n // Function returns the lcm // of first n numbers function lcm($n) { $ans = 1; for ($i = 1; $i <= $n; $i++) $ans = ($ans * $i) / (gmp_gcd(strval(ans) strval(i))); return $ans; } // Driver Code $n = 20; echo lcm($n); // This code is contributed by mits ?> 出力
232792560
時間計算量: O(n log2n) C++ の _gcd(ab) の複雑さは log2n であり、ループ内で n 回実行されるためです。
補助スペース: O(1)
上記の解決策は、単一の入力に対しては正常に機能します。ただし、複数の入力がある場合は、エラトステネスのふるいを使用してすべての素因数を保存することをお勧めします。 Sieve ベースのアプローチについては、以下の記事を参照してください。
アプローチ: [使用 エラトステネスのふるい 】
最初の「n」個の数値で割り切れる最小の数を見つける問題をより効率的な方法で解決するには、エラトステネスの篩を使用して「n」までの素数を事前計算します。次に、これらの素数を使用して、「n」以下の各素数の最大累乗を考慮することで最小公倍数 (LCM) をより効率的に計算できます。
段階的なアプローチ:
- n までの素数を生成します。 エラトステネスのふるいを使用して、「n」までのすべての素数を見つけます。
- これらの素数を使用して LCM を計算します。 各素数について、「n」以下のその素数の最大累乗を決定します。これらの最も高いべき乗を乗算して最小公倍数を取得します。
以下は上記のアプローチの実装です。
C++#include #include #include using namespace std; // Function to generate all prime numbers up to n using the // Sieve of Eratosthenes vector<int> sieve_of_eratosthenes(int n) { vector<bool> is_prime(n + 1 true); int p = 2; while (p * p <= n) { if (is_prime[p]) { for (int i = p * p; i <= n; i += p) { is_prime[i] = false; } } ++p; } vector<int> prime_numbers; for (int p = 2; p <= n; ++p) { if (is_prime[p]) { prime_numbers.push_back(p); } } return prime_numbers; } // Function to find the smallest number divisible by all // numbers from 1 to n long long smallest_multiple(int n) { vector<int> primes = sieve_of_eratosthenes(n); long long lcm = 1; for (int prime : primes) { // Calculate the highest power of the prime that is // <= n int power = 1; while (pow(prime power + 1) <= n) { ++power; } lcm *= pow(prime power); } return lcm; } int main() { int n = 20; cout << smallest_multiple(n) <<endl; return 0; }
Java import java.util.ArrayList; import java.util.List; public class SmallestMultiple { // Function to generate all prime numbers up to n using // the Sieve of Eratosthenes public static List<Integer> sieveOfEratosthenes(int n) { boolean[] isPrime = new boolean[n + 1]; for (int i = 0; i <= n; i++) { isPrime[i] = true; } int p = 2; while (p * p <= n) { if (isPrime[p]) { for (int i = p * p; i <= n; i += p) { isPrime[i] = false; } } p++; } List<Integer> primeNumbers = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (isPrime[i]) { primeNumbers.add(i); } } return primeNumbers; } // Function to find the smallest number divisible by all // numbers from 1 to n public static long smallestMultiple(int n) { List<Integer> primes = sieveOfEratosthenes(n); long lcm = 1; for (int prime : primes) { // Calculate the highest power of the prime that // is <= n int power = 1; while (Math.pow(prime power + 1) <= n) { power++; } lcm *= Math.pow(prime power); } return lcm; } public static void main(String[] args) { int n = 20; System.out.println(smallestMultiple(n)); } }
Python import math def sieve_of_eratosthenes(n): '''Generate all prime numbers up to n.''' is_prime = [True] * (n + 1) p = 2 while (p * p <= n): if (is_prime[p] == True): for i in range(p * p n + 1 p): is_prime[i] = False p += 1 prime_numbers = [p for p in range(2 n + 1) if is_prime[p]] return prime_numbers def smallest_multiple(n): '''Find the smallest number divisible by all numbers from 1 to n.''' primes = sieve_of_eratosthenes(n) lcm = 1 for prime in primes: # Calculate the highest power of the prime that is <= n power = 1 while prime ** (power + 1) <= n: power += 1 lcm *= prime ** power return lcm # Example usage: n = 20 print(smallest_multiple(n))
JavaScript // Function to generate all prime numbers up to n using the // Sieve of Eratosthenes function sieveOfEratosthenes(n) { let isPrime = new Array(n + 1).fill(true); let p = 2; while (p * p <= n) { if (isPrime[p]) { for (let i = p * p; i <= n; i += p) { isPrime[i] = false; } } p++; } let primeNumbers = []; for (let p = 2; p <= n; p++) { if (isPrime[p]) { primeNumbers.push(p); } } return primeNumbers; } // Function to find the smallest number divisible by all // numbers from 1 to n function smallestMultiple(n) { let primes = sieveOfEratosthenes(n); let lcm = 1; for (let prime of primes) { // Calculate the highest power of the prime that is // <= n let power = 1; while (Math.pow(prime power + 1) <= n) { power++; } lcm *= Math.pow(prime power); } return lcm; } // Example usage: let n = 20; console.log(smallestMultiple(n));
出力
The smallest number divisible by all numbers from 1 to 20 is 232792560
時間計算量: O(nloglogn)
補助スペース: の上)